Mark Scheme 4753 June 2007

Section A

$\begin{gathered} 1 \text { (i) } \begin{array}{c} 1 / 2(1+2 x)^{-1 / 2} \times 2 \\ = \\ \frac{1}{\sqrt{1+2 x}} \end{array} . \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	chain rule $1 / 2 u^{-1 / 2}$ or $1 / 2(1+2 x)^{-1 / 2}$ oe, but must resolve $1 / 2 \times 2=1$
$\text { (ii) } \begin{aligned} y & =\ln \left(1-e^{-x}\right) \\ \Rightarrow \quad \frac{d y}{d x} & =\frac{1}{1-e^{-x}} \cdot\left(-e^{-x}\right)(-1) \\ & =\frac{e^{-x}}{1-e^{-x}} \\ & =\frac{1}{e^{x}-1} * \end{aligned}$	M1 B1 A1 E1 [4]	chain rule $\frac{1}{1-e^{-x}}$ or $\frac{1}{u}$ if substituting $u=1-e^{-x}$ $\times\left(-\mathrm{e}^{-x}\right)(-1)$ or e^{-x} www (may imply $\times \mathrm{e}^{x}$ top and bottom)
$2 \operatorname{gf}(x)=\|1-x\|$	B1 B1 B1 [3]	intercepts must be labelled line must extend either side of each axis condone no labels, but line must extend to left of y axis
3(i) Differentiating implicitly: $\begin{aligned} & (4 y+1) \frac{d y}{d x}=18 x \\ \Rightarrow \quad & \frac{d y}{d x}=\frac{18 x}{4 y+1} \end{aligned}$ When $x=1, y=2, \frac{d y}{d x}=\frac{18}{9}=2$	M1 A1 M1 A1cao [4]	$(4 y+1) \frac{d y}{d x}=\ldots \text { allow } 4 y+1 \frac{d y}{d x}=\ldots$ condone omitted bracket if intention implied by following line. $4 y \frac{d y}{d x}+1$ M1 A0 substituting $x=1, y=2$ into their derivative (provided it contains x 's and y 's). Allow unsupported answers.
$\text { (ii) } \begin{aligned} & \frac{d y}{d x}=0 \text { when } x=0 \\ & \Rightarrow 2 y^{2}+y=1 \\ & \Rightarrow 2 y^{2}+y-1=0 \\ & \Rightarrow(2 y-1)(y+1)=0 \\ & \Rightarrow y=1 / 2 \text { or } y=-1 \end{aligned}$ So coords are $(0,1 / 2)$ and $(0,-1)$	B1 M1 A1 A1 [4]	$x=0$ from their numerator $=0$ (must have a denominator) Obtaining correct quadratic and attempt to factorise or use quadratic formula $y=\frac{-1 \pm \sqrt{1-4 \times-2}}{4}$ cao allow unsupported answers provided quadratic is shown

Section B

7(i) Asymptote when $1+2 x^{3}=0$ $\begin{aligned} \Rightarrow \quad & 2 x^{3}=-1 \\ \Rightarrow & x=-\frac{1}{\sqrt[3]{2}} \\ & =-0.794 \end{aligned}$	M1 A1 A1cao [3]	oe, condone $\pm \frac{1}{\sqrt[3]{2}}$ if positive root is rejected must be to 3 s.f.
$\text { (ii) } \begin{aligned} & \frac{d y}{d x}=\frac{\left(1+2 x^{3}\right) \cdot 2 x-x^{2} \cdot 6 x^{2}}{\left(1+2 x^{3}\right)^{2}} \\ &=\frac{2 x+4 x^{4}-6 x^{4}}{\left(1+2 x^{3}\right)^{2}} \\ &=\frac{2 x-2 x^{4}}{\left(1+2 x^{3}\right)^{2}} * \\ & \Rightarrow \quad \begin{array}{l} \mathrm{d} y / \mathrm{d} x \\ x \end{array}=0 \text { when } 2 x\left(1-x^{3}\right)=0 \\ & \text { or } x=1, \\ & y=1 / 3 \end{aligned}$	M1 A1 E1 M1 B1 B1 B1 B1 [8]	Quotient or product rule: ($u \mathrm{~d} v-v \mathrm{~d} u \mathrm{M} 0$) $2 x\left(1+2 x^{3}\right)^{-1}+x^{2}(-1)\left(1+2 x^{3}\right)^{-2} .6 x^{2}$ allow one slip on derivatives correct expression - condone missing bracket if if intention implied by following line derivative $=0$ $x=0$ or 1 - allow unsupported answers $y=0$ and $1 / 3$ SC -1 for setting denom $=0$ or extra solutions (e.g. $x=-1$)
(iii) $A=\int_{0}^{1} \frac{x^{2}}{1+2 x^{3}} d x$	M1	Correct integral and limits - allow \int_{1}^{0}
$\begin{aligned} \text { either } & =\left[\frac{1}{6} \ln \left(1+2 x^{3}\right)\right]_{0}^{1} \\ & =\frac{1}{6} \ln 3^{*} \end{aligned}$	M1 A1 M1 E1	$\begin{aligned} & \begin{array}{l} k \ln \left(1+2 x^{3}\right) \\ k=1 / 6 \\ \text { substituting limits dep previous M1 } \\ \text { www } \end{array} \end{aligned}$
$\begin{aligned} \text { or } & \text { let } u=1+2 x^{3} \Rightarrow \mathrm{~d} u=6 x^{2} \mathrm{~d} x \\ \Rightarrow \quad A & =\int_{1}^{3} \frac{1}{6} \cdot \frac{1}{u} d u \\ & =\left[\frac{1}{6} \ln u\right]_{1}^{3} \\ & =\frac{1}{6} \ln 3^{*} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { E1 } \\ & \text { [5] } \end{aligned}$	$\begin{aligned} & \frac{1}{6 u} \\ & \frac{1}{6} \ln u \\ & \text { substituting correct limits (but must have used } \\ & \text { substitution) } \\ & \text { www } \end{aligned}$

8 (i) $x \cos 2 x=0$ when $x=0$ or $\cos 2 x=0$ $\begin{array}{ll} \Rightarrow & 2 x=\pi / 2 \\ \Rightarrow & x=1 / 4 \pi \\ \Rightarrow & \mathrm{P} \text { is }(\pi / 4,0) \end{array}$	M1 M1 A1 [3]	$\begin{aligned} & \cos 2 x=0 \\ & \text { or } x=1 / 2 \cos ^{-1} 0 \\ & x=0.785 . . \text { or } 45 \text { is M1 M1 A0 } \end{aligned}$
(ii) $\begin{aligned} \mathrm{f}(-x) & =-x \cos (-2 x) \\ & =-x \cos 2 x \\ & =-\mathrm{f}(x) \end{aligned}$ Half turn symmetry about O .	M1 E1 B1 [3]	$\begin{aligned} & -x \cos (-2 x) \\ & =-x \cos 2 x \\ & \text { Must have two of: rotational, order } 2 \text {, about } \mathrm{O}, \\ & \text { (half turn = rotational order 2) } \end{aligned}$
(iii) $\mathrm{f}^{\prime}(x)=\cos 2 x-2 x \sin 2 x$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	product rule
$\begin{array}{ll} \text { (iv) } & \mathrm{f}^{\prime}(x)=0 \Rightarrow \cos 2 x=2 x \sin 2 x \\ \Rightarrow & 2 x \frac{\sin 2 x}{\cos 2 x}=1 \\ \Rightarrow & x \tan 2 x=1 / 2 * \end{array}$	M1 E1 [2]	$\frac{\sin }{\cos }=\tan$ www
$\text { (v) } \begin{aligned} \mathrm{f}^{\prime}(0) & =\cos 0-2 \cdot 0 \cdot \sin 0=1 \\ \mathrm{f}^{\prime \prime}(x) & =-2 \sin 2 x-2 \sin 2 x-4 x \cos 2 x \\ & =-4 \sin 2 x-4 x \cos 2 x \\ \Rightarrow \quad \mathrm{f}^{\prime \prime}(0) & =-4 \sin 0-4 \cdot 0 \cdot \cos 0=0 \end{aligned}$	B1ft M1 A1 E1 [4]	allow ft on (their) product rule expression product rule on (2) $x \sin 2 x$ correct expression - mark final expression www
$\begin{aligned} & \text { (vi) Let } u=x, \mathrm{~d} v / \mathrm{d} x=\cos 2 x \\ & \Rightarrow v=1 / 2 \sin 2 x \\ & \begin{aligned} \int_{0}^{\pi / 4} x \cos 2 x d x & =\left[\frac{1}{2} x \sin 2 x\right]_{0}^{\pi / 4}-\int_{0}^{\pi / 4} \frac{1}{2} \sin 2 x d x \\ & =\frac{\pi}{8}+\left[\frac{1}{4} \cos 2 x\right]_{0}^{\pi / 4} \\ & =\frac{\pi}{8}-\frac{1}{4} \end{aligned} \end{aligned}$ Area of region enclosed by curve and x-axis between $x=0$ and $x=\pi / 4$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { B1 } \\ & {[6]} \end{aligned}$	Integration by parts with $u=x, \mathrm{~d} v / \mathrm{d} x=\cos 2 x$ $\left[\frac{1}{4} \cos 2 x\right]$ - sign consistent with their previous line substituting limits - dep using parts www or graph showing correct area - condone P for $\pi / 4$.

